G = C24.6A4 order 192 = 26·3
metabelian, soluble, monomial
Aliases:
C24.6A4,
C4⋊1D4⋊C6,
C42⋊(C2×C6),
C42⋊C6⋊C2,
C42⋊2C2⋊C6,
C42⋊C3⋊2C22,
C23.5(C2×A4),
C23.A4⋊1C2,
C22.54C24⋊C3,
C22.5(C22×A4),
SmallGroup(192,1008)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C24.6A4
G = < a,b,c,d,e,f,g | a2=b2=c2=d2=g3=1, e2=dc=gcg-1=cd, f2=gdg-1=c, ab=ba, faf-1=ac=ca, ad=da, eae-1=acd, ag=ga, ebe-1=bc=cb, fbf-1=bd=db, bg=gb, ce=ec, cf=fc, gfg-1=de=ed, df=fd, ef=fe, geg-1=cef >
Subgroups: 342 in 67 conjugacy classes, 16 normal (10 characteristic)
C1, C2, C3, C4, C22, C22, C6, C2×C4, D4, C23, C23, C23, A4, C2×C6, C42, C22⋊C4, C4⋊C4, C22×C4, C2×D4, C24, C2×A4, C22≀C2, C4⋊D4, C22.D4, C42⋊2C2, C4⋊1D4, C42⋊C3, C22×A4, C22.54C24, C42⋊C6, C23.A4, C24.6A4
Quotients: C1, C2, C3, C22, C6, A4, C2×C6, C2×A4, C22×A4, C24.6A4
Character table of C24.6A4
class | 1 | 2A | 2B | 2C | 2D | 2E | 3A | 3B | 4A | 4B | 4C | 6A | 6B | 6C | 6D | 6E | 6F | |
size | 1 | 3 | 4 | 4 | 4 | 12 | 16 | 16 | 12 | 12 | 12 | 16 | 16 | 16 | 16 | 16 | 16 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | -1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | -1 | -1 | -1 | ζ32 | ζ3 | 1 | 1 | -1 | ζ65 | ζ65 | ζ32 | ζ3 | ζ6 | ζ6 | linear of order 6 |
ρ6 | 1 | 1 | -1 | -1 | 1 | -1 | ζ3 | ζ32 | 1 | -1 | 1 | ζ32 | ζ6 | ζ65 | ζ6 | ζ3 | ζ65 | linear of order 6 |
ρ7 | 1 | 1 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | 1 | 1 | 1 | ζ32 | ζ32 | ζ3 | ζ32 | ζ3 | ζ3 | linear of order 3 |
ρ8 | 1 | 1 | -1 | 1 | -1 | 1 | ζ3 | ζ32 | 1 | -1 | -1 | ζ6 | ζ32 | ζ65 | ζ6 | ζ65 | ζ3 | linear of order 6 |
ρ9 | 1 | 1 | 1 | -1 | -1 | -1 | ζ3 | ζ32 | 1 | 1 | -1 | ζ6 | ζ6 | ζ3 | ζ32 | ζ65 | ζ65 | linear of order 6 |
ρ10 | 1 | 1 | -1 | -1 | 1 | -1 | ζ32 | ζ3 | 1 | -1 | 1 | ζ3 | ζ65 | ζ6 | ζ65 | ζ32 | ζ6 | linear of order 6 |
ρ11 | 1 | 1 | -1 | 1 | -1 | 1 | ζ32 | ζ3 | 1 | -1 | -1 | ζ65 | ζ3 | ζ6 | ζ65 | ζ6 | ζ32 | linear of order 6 |
ρ12 | 1 | 1 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | 1 | 1 | 1 | ζ3 | ζ3 | ζ32 | ζ3 | ζ32 | ζ32 | linear of order 3 |
ρ13 | 3 | 3 | -3 | -3 | 3 | 1 | 0 | 0 | -1 | 1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C2×A4 |
ρ14 | 3 | 3 | -3 | 3 | -3 | -1 | 0 | 0 | -1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C2×A4 |
ρ15 | 3 | 3 | 3 | -3 | -3 | 1 | 0 | 0 | -1 | -1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C2×A4 |
ρ16 | 3 | 3 | 3 | 3 | 3 | -1 | 0 | 0 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from A4 |
ρ17 | 12 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
Permutation representations of C24.6A4
►On 16 points - transitive group
16T420Generators in S
16
(2 4)(5 12)(6 11)(7 10)(8 9)(14 16)
(2 14)(4 16)(5 10)(6 8)(7 12)(9 11)
(1 13)(2 14)(3 15)(4 16)(5 12)(6 9)(7 10)(8 11)
(1 15)(2 16)(3 13)(4 14)(5 10)(6 11)(7 12)(8 9)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)
(1 12 13 5)(2 9 14 6)(3 10 15 7)(4 11 16 8)
(2 10 6)(3 13 15)(4 7 11)(5 8 14)(9 16 12)
G:=sub<Sym(16)| (2,4)(5,12)(6,11)(7,10)(8,9)(14,16), (2,14)(4,16)(5,10)(6,8)(7,12)(9,11), (1,13)(2,14)(3,15)(4,16)(5,12)(6,9)(7,10)(8,11), (1,15)(2,16)(3,13)(4,14)(5,10)(6,11)(7,12)(8,9), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16), (1,12,13,5)(2,9,14,6)(3,10,15,7)(4,11,16,8), (2,10,6)(3,13,15)(4,7,11)(5,8,14)(9,16,12)>;
G:=Group( (2,4)(5,12)(6,11)(7,10)(8,9)(14,16), (2,14)(4,16)(5,10)(6,8)(7,12)(9,11), (1,13)(2,14)(3,15)(4,16)(5,12)(6,9)(7,10)(8,11), (1,15)(2,16)(3,13)(4,14)(5,10)(6,11)(7,12)(8,9), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16), (1,12,13,5)(2,9,14,6)(3,10,15,7)(4,11,16,8), (2,10,6)(3,13,15)(4,7,11)(5,8,14)(9,16,12) );
G=PermutationGroup([[(2,4),(5,12),(6,11),(7,10),(8,9),(14,16)], [(2,14),(4,16),(5,10),(6,8),(7,12),(9,11)], [(1,13),(2,14),(3,15),(4,16),(5,12),(6,9),(7,10),(8,11)], [(1,15),(2,16),(3,13),(4,14),(5,10),(6,11),(7,12),(8,9)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16)], [(1,12,13,5),(2,9,14,6),(3,10,15,7),(4,11,16,8)], [(2,10,6),(3,13,15),(4,7,11),(5,8,14),(9,16,12)]])
G:=TransitiveGroup(16,420);
►On 24 points - transitive group
24T368Generators in S
24
(1 5)(2 6)(10 12)(14 16)(17 19)(21 23)
(2 6)(3 8)(9 11)(10 12)(13 15)(17 19)
(1 5)(2 6)(3 8)(4 7)(13 15)(14 16)(17 19)(18 20)
(1 5)(2 6)(3 8)(4 7)(9 11)(10 12)(21 23)(22 24)
(1 2)(3 4)(5 6)(7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)
(1 3 5 8)(2 4 6 7)(9 22)(10 23)(11 24)(12 21)(13 17 15 19)(14 18 16 20)
(1 21 16)(2 10 19)(3 9 13)(4 24 20)(5 23 14)(6 12 17)(7 22 18)(8 11 15)
G:=sub<Sym(24)| (1,5)(2,6)(10,12)(14,16)(17,19)(21,23), (2,6)(3,8)(9,11)(10,12)(13,15)(17,19), (1,5)(2,6)(3,8)(4,7)(13,15)(14,16)(17,19)(18,20), (1,5)(2,6)(3,8)(4,7)(9,11)(10,12)(21,23)(22,24), (1,2)(3,4)(5,6)(7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (1,3,5,8)(2,4,6,7)(9,22)(10,23)(11,24)(12,21)(13,17,15,19)(14,18,16,20), (1,21,16)(2,10,19)(3,9,13)(4,24,20)(5,23,14)(6,12,17)(7,22,18)(8,11,15)>;
G:=Group( (1,5)(2,6)(10,12)(14,16)(17,19)(21,23), (2,6)(3,8)(9,11)(10,12)(13,15)(17,19), (1,5)(2,6)(3,8)(4,7)(13,15)(14,16)(17,19)(18,20), (1,5)(2,6)(3,8)(4,7)(9,11)(10,12)(21,23)(22,24), (1,2)(3,4)(5,6)(7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (1,3,5,8)(2,4,6,7)(9,22)(10,23)(11,24)(12,21)(13,17,15,19)(14,18,16,20), (1,21,16)(2,10,19)(3,9,13)(4,24,20)(5,23,14)(6,12,17)(7,22,18)(8,11,15) );
G=PermutationGroup([[(1,5),(2,6),(10,12),(14,16),(17,19),(21,23)], [(2,6),(3,8),(9,11),(10,12),(13,15),(17,19)], [(1,5),(2,6),(3,8),(4,7),(13,15),(14,16),(17,19),(18,20)], [(1,5),(2,6),(3,8),(4,7),(9,11),(10,12),(21,23),(22,24)], [(1,2),(3,4),(5,6),(7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24)], [(1,3,5,8),(2,4,6,7),(9,22),(10,23),(11,24),(12,21),(13,17,15,19),(14,18,16,20)], [(1,21,16),(2,10,19),(3,9,13),(4,24,20),(5,23,14),(6,12,17),(7,22,18),(8,11,15)]])
G:=TransitiveGroup(24,368);
►On 24 points - transitive group
24T373Generators in S
24
(1 4)(2 3)(5 7)(6 8)(9 18)(10 17)(11 20)(12 19)(13 16)(14 15)(21 24)(22 23)
(2 7)(3 5)(10 12)(13 15)(14 16)(17 19)
(1 8)(2 7)(3 5)(4 6)(9 11)(10 12)(17 19)(18 20)
(1 8)(2 7)(3 5)(4 6)(13 15)(14 16)(21 23)(22 24)
(1 2)(3 4)(5 6)(7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)
(1 5 8 3)(2 6 7 4)(9 20 11 18)(10 17 12 19)(13 23)(14 24)(15 21)(16 22)
(1 24 11)(2 16 17)(3 13 10)(4 21 20)(5 15 12)(6 23 18)(7 14 19)(8 22 9)
G:=sub<Sym(24)| (1,4)(2,3)(5,7)(6,8)(9,18)(10,17)(11,20)(12,19)(13,16)(14,15)(21,24)(22,23), (2,7)(3,5)(10,12)(13,15)(14,16)(17,19), (1,8)(2,7)(3,5)(4,6)(9,11)(10,12)(17,19)(18,20), (1,8)(2,7)(3,5)(4,6)(13,15)(14,16)(21,23)(22,24), (1,2)(3,4)(5,6)(7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (1,5,8,3)(2,6,7,4)(9,20,11,18)(10,17,12,19)(13,23)(14,24)(15,21)(16,22), (1,24,11)(2,16,17)(3,13,10)(4,21,20)(5,15,12)(6,23,18)(7,14,19)(8,22,9)>;
G:=Group( (1,4)(2,3)(5,7)(6,8)(9,18)(10,17)(11,20)(12,19)(13,16)(14,15)(21,24)(22,23), (2,7)(3,5)(10,12)(13,15)(14,16)(17,19), (1,8)(2,7)(3,5)(4,6)(9,11)(10,12)(17,19)(18,20), (1,8)(2,7)(3,5)(4,6)(13,15)(14,16)(21,23)(22,24), (1,2)(3,4)(5,6)(7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (1,5,8,3)(2,6,7,4)(9,20,11,18)(10,17,12,19)(13,23)(14,24)(15,21)(16,22), (1,24,11)(2,16,17)(3,13,10)(4,21,20)(5,15,12)(6,23,18)(7,14,19)(8,22,9) );
G=PermutationGroup([[(1,4),(2,3),(5,7),(6,8),(9,18),(10,17),(11,20),(12,19),(13,16),(14,15),(21,24),(22,23)], [(2,7),(3,5),(10,12),(13,15),(14,16),(17,19)], [(1,8),(2,7),(3,5),(4,6),(9,11),(10,12),(17,19),(18,20)], [(1,8),(2,7),(3,5),(4,6),(13,15),(14,16),(21,23),(22,24)], [(1,2),(3,4),(5,6),(7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24)], [(1,5,8,3),(2,6,7,4),(9,20,11,18),(10,17,12,19),(13,23),(14,24),(15,21),(16,22)], [(1,24,11),(2,16,17),(3,13,10),(4,21,20),(5,15,12),(6,23,18),(7,14,19),(8,22,9)]])
G:=TransitiveGroup(24,373);
►On 24 points - transitive group
24T377Generators in S
24
(3 4)(5 6)(10 12)(13 15)(18 20)(22 24)
(1 8)(2 7)(3 5)(4 6)(9 21)(10 22)(11 23)(12 24)(13 20)(14 19)(15 18)(16 17)
(1 2)(3 4)(5 6)(7 8)(13 15)(14 16)(17 19)(18 20)
(1 2)(3 4)(5 6)(7 8)(9 11)(10 12)(21 23)(22 24)
(5 6)(7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)
(1 4 2 3)(5 7 6 8)(9 11)(10 12)(13 14 15 16)(17 20 19 18)
(1 9 16)(2 11 14)(3 10 15)(4 12 13)(5 22 18)(6 24 20)(7 23 19)(8 21 17)
G:=sub<Sym(24)| (3,4)(5,6)(10,12)(13,15)(18,20)(22,24), (1,8)(2,7)(3,5)(4,6)(9,21)(10,22)(11,23)(12,24)(13,20)(14,19)(15,18)(16,17), (1,2)(3,4)(5,6)(7,8)(13,15)(14,16)(17,19)(18,20), (1,2)(3,4)(5,6)(7,8)(9,11)(10,12)(21,23)(22,24), (5,6)(7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (1,4,2,3)(5,7,6,8)(9,11)(10,12)(13,14,15,16)(17,20,19,18), (1,9,16)(2,11,14)(3,10,15)(4,12,13)(5,22,18)(6,24,20)(7,23,19)(8,21,17)>;
G:=Group( (3,4)(5,6)(10,12)(13,15)(18,20)(22,24), (1,8)(2,7)(3,5)(4,6)(9,21)(10,22)(11,23)(12,24)(13,20)(14,19)(15,18)(16,17), (1,2)(3,4)(5,6)(7,8)(13,15)(14,16)(17,19)(18,20), (1,2)(3,4)(5,6)(7,8)(9,11)(10,12)(21,23)(22,24), (5,6)(7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (1,4,2,3)(5,7,6,8)(9,11)(10,12)(13,14,15,16)(17,20,19,18), (1,9,16)(2,11,14)(3,10,15)(4,12,13)(5,22,18)(6,24,20)(7,23,19)(8,21,17) );
G=PermutationGroup([[(3,4),(5,6),(10,12),(13,15),(18,20),(22,24)], [(1,8),(2,7),(3,5),(4,6),(9,21),(10,22),(11,23),(12,24),(13,20),(14,19),(15,18),(16,17)], [(1,2),(3,4),(5,6),(7,8),(13,15),(14,16),(17,19),(18,20)], [(1,2),(3,4),(5,6),(7,8),(9,11),(10,12),(21,23),(22,24)], [(5,6),(7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24)], [(1,4,2,3),(5,7,6,8),(9,11),(10,12),(13,14,15,16),(17,20,19,18)], [(1,9,16),(2,11,14),(3,10,15),(4,12,13),(5,22,18),(6,24,20),(7,23,19),(8,21,17)]])
G:=TransitiveGroup(24,377);
►On 24 points - transitive group
24T380Generators in S
24
(1 3)(2 4)(5 8)(6 7)(9 10)(11 12)(13 14)(15 16)(17 18)(19 20)(21 22)(23 24)
(1 8)(2 7)(3 5)(4 6)(9 21)(10 22)(11 23)(12 24)(13 20)(14 19)(15 18)(16 17)
(1 2)(3 4)(5 6)(7 8)(13 15)(14 16)(17 19)(18 20)
(1 2)(3 4)(5 6)(7 8)(9 11)(10 12)(21 23)(22 24)
(5 6)(7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)
(1 4 2 3)(5 7 6 8)(9 11)(10 12)(13 14 15 16)(17 20 19 18)
(1 9 16)(2 11 14)(3 10 15)(4 12 13)(5 22 18)(6 24 20)(7 23 19)(8 21 17)
G:=sub<Sym(24)| (1,3)(2,4)(5,8)(6,7)(9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24), (1,8)(2,7)(3,5)(4,6)(9,21)(10,22)(11,23)(12,24)(13,20)(14,19)(15,18)(16,17), (1,2)(3,4)(5,6)(7,8)(13,15)(14,16)(17,19)(18,20), (1,2)(3,4)(5,6)(7,8)(9,11)(10,12)(21,23)(22,24), (5,6)(7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (1,4,2,3)(5,7,6,8)(9,11)(10,12)(13,14,15,16)(17,20,19,18), (1,9,16)(2,11,14)(3,10,15)(4,12,13)(5,22,18)(6,24,20)(7,23,19)(8,21,17)>;
G:=Group( (1,3)(2,4)(5,8)(6,7)(9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24), (1,8)(2,7)(3,5)(4,6)(9,21)(10,22)(11,23)(12,24)(13,20)(14,19)(15,18)(16,17), (1,2)(3,4)(5,6)(7,8)(13,15)(14,16)(17,19)(18,20), (1,2)(3,4)(5,6)(7,8)(9,11)(10,12)(21,23)(22,24), (5,6)(7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (1,4,2,3)(5,7,6,8)(9,11)(10,12)(13,14,15,16)(17,20,19,18), (1,9,16)(2,11,14)(3,10,15)(4,12,13)(5,22,18)(6,24,20)(7,23,19)(8,21,17) );
G=PermutationGroup([[(1,3),(2,4),(5,8),(6,7),(9,10),(11,12),(13,14),(15,16),(17,18),(19,20),(21,22),(23,24)], [(1,8),(2,7),(3,5),(4,6),(9,21),(10,22),(11,23),(12,24),(13,20),(14,19),(15,18),(16,17)], [(1,2),(3,4),(5,6),(7,8),(13,15),(14,16),(17,19),(18,20)], [(1,2),(3,4),(5,6),(7,8),(9,11),(10,12),(21,23),(22,24)], [(5,6),(7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24)], [(1,4,2,3),(5,7,6,8),(9,11),(10,12),(13,14,15,16),(17,20,19,18)], [(1,9,16),(2,11,14),(3,10,15),(4,12,13),(5,22,18),(6,24,20),(7,23,19),(8,21,17)]])
G:=TransitiveGroup(24,380);
►On 24 points - transitive group
24T382Generators in S
24
(1 2)(3 8)(4 7)(5 6)(9 17)(10 20)(11 19)(12 18)(13 24)(14 23)(15 22)(16 21)
(1 8)(2 3)(4 6)(5 7)(9 18)(10 19)(11 20)(12 17)(13 14)(15 16)(21 22)(23 24)
(1 6)(2 5)(3 7)(4 8)(13 15)(14 16)(21 23)(22 24)
(1 6)(2 5)(3 7)(4 8)(9 11)(10 12)(17 19)(18 20)
(1 2)(3 4)(5 6)(7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)
(1 8 6 4)(2 7 5 3)(9 19)(10 20)(11 17)(12 18)(13 23 15 21)(14 24 16 22)
(1 17 21)(2 9 16)(3 18 15)(4 10 24)(5 11 14)(6 19 23)(7 20 13)(8 12 22)
G:=sub<Sym(24)| (1,2)(3,8)(4,7)(5,6)(9,17)(10,20)(11,19)(12,18)(13,24)(14,23)(15,22)(16,21), (1,8)(2,3)(4,6)(5,7)(9,18)(10,19)(11,20)(12,17)(13,14)(15,16)(21,22)(23,24), (1,6)(2,5)(3,7)(4,8)(13,15)(14,16)(21,23)(22,24), (1,6)(2,5)(3,7)(4,8)(9,11)(10,12)(17,19)(18,20), (1,2)(3,4)(5,6)(7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (1,8,6,4)(2,7,5,3)(9,19)(10,20)(11,17)(12,18)(13,23,15,21)(14,24,16,22), (1,17,21)(2,9,16)(3,18,15)(4,10,24)(5,11,14)(6,19,23)(7,20,13)(8,12,22)>;
G:=Group( (1,2)(3,8)(4,7)(5,6)(9,17)(10,20)(11,19)(12,18)(13,24)(14,23)(15,22)(16,21), (1,8)(2,3)(4,6)(5,7)(9,18)(10,19)(11,20)(12,17)(13,14)(15,16)(21,22)(23,24), (1,6)(2,5)(3,7)(4,8)(13,15)(14,16)(21,23)(22,24), (1,6)(2,5)(3,7)(4,8)(9,11)(10,12)(17,19)(18,20), (1,2)(3,4)(5,6)(7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (1,8,6,4)(2,7,5,3)(9,19)(10,20)(11,17)(12,18)(13,23,15,21)(14,24,16,22), (1,17,21)(2,9,16)(3,18,15)(4,10,24)(5,11,14)(6,19,23)(7,20,13)(8,12,22) );
G=PermutationGroup([[(1,2),(3,8),(4,7),(5,6),(9,17),(10,20),(11,19),(12,18),(13,24),(14,23),(15,22),(16,21)], [(1,8),(2,3),(4,6),(5,7),(9,18),(10,19),(11,20),(12,17),(13,14),(15,16),(21,22),(23,24)], [(1,6),(2,5),(3,7),(4,8),(13,15),(14,16),(21,23),(22,24)], [(1,6),(2,5),(3,7),(4,8),(9,11),(10,12),(17,19),(18,20)], [(1,2),(3,4),(5,6),(7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24)], [(1,8,6,4),(2,7,5,3),(9,19),(10,20),(11,17),(12,18),(13,23,15,21),(14,24,16,22)], [(1,17,21),(2,9,16),(3,18,15),(4,10,24),(5,11,14),(6,19,23),(7,20,13),(8,12,22)]])
G:=TransitiveGroup(24,382);
Matrix representation of C24.6A4 ►in GL12(ℤ)
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | -1 |
,
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | -1 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
,
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
-1 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | -1 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
,
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
-1 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | -1 |
,
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | -1 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
-1 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
,
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
-1 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
,
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
-1 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | -1 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
G:=sub<GL(12,Integers())| [1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,-1,0,1,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,0,0,0,0,0,0,0,0,0,1,0,-1,0,0,0,0,0,0,0,0,0,0,0,-1],[1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,0,0,0,0,0,0,0,0,0,1,0,-1,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,-1,0,1,0,0,0,0,0,0,0,0,0,-1,1,0],[0,-1,1,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,1,-1,0],[0,1,-1,0,0,0,0,0,0,0,0,0,1,0,-1,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,0,0,0,0,0,0,0,0,0,1,0,-1,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,0,0,0,0,0,0,0,0,0,1,0,-1,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,0,0,0,0,0,0,0,0,0,1,0,-1,0,0,0,0,0,0,0,0,0,0,0,-1],[0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,1,-1,0,0,1,-1,0,0,0,0,0,0,0,0,0,1,0,-1,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,0,0,0,0,0,0,0,0,0,1,0,-1,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0],[0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,1,-1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,1,-1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0],[1,0,-1,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,-1,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0] >;
C24.6A4 in GAP, Magma, Sage, TeX
C_2^4._6A_4
% in TeX
G:=Group("C2^4.6A4");
// GroupNames label
G:=SmallGroup(192,1008);
// by ID
G=gap.SmallGroup(192,1008);
# by ID
G:=PCGroup([7,-2,-2,-3,-2,2,-2,2,4371,850,185,360,2524,2111,1173,102,1027,1784]);
// Polycyclic
G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=d^2=g^3=1,e^2=d*c=g*c*g^-1=c*d,f^2=g*d*g^-1=c,a*b=b*a,f*a*f^-1=a*c=c*a,a*d=d*a,e*a*e^-1=a*c*d,a*g=g*a,e*b*e^-1=b*c=c*b,f*b*f^-1=b*d=d*b,b*g=g*b,c*e=e*c,c*f=f*c,g*f*g^-1=d*e=e*d,d*f=f*d,e*f=f*e,g*e*g^-1=c*e*f>;
// generators/relations
Export
Character table of C24.6A4 in TeX